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Abstract
Commencing with the composite fermion (CF) description of the ν = 5/2
fractional quantum Hall effect, we study the dynamics of the edge neutral
Majorana fermions. We confirm that these neutral modes are chiral and show
that a conventional p-wave pairing interaction between CFs does not contribute
to the dynamics of the edge neutral fermions. We find an important bilinear
coupling between the charged and neutral modes. We show that owing to this
coupling, the dispersion of the neutral modes is linear and their velocities are
proportional to the wavevector of the charged mode. This dynamic origin of the
motion of the edge Majorana fermions has never been predicted before.

1. Introduction

Edge states in quantum Hall effects (QHE) play an extremely important role [1]. They
are unique known media for reflecting the topological order of the bulk states in fractional
QHE (FQHE) [2]. Recently, the topologically protected quantum computation [3] based
on the possible non-abelian statistics of quasiparticles in the filling factor ν = 5/2 FQH
(EFQH) states [4, 5]1 has attracted great attention, for it provides a possible candidate for the
decoherence-free qubit. Several experimental designs for detecting the non-abelian statistics
of the ν = 5/2 EFQH state have been proposed [7]. The crucial part of these designs was the
point-contact tunnelling of the quasiparticles between different edges of the EFQH droplet.

The fundamental physics behind the non-abelian statistics in the EFQH state is that low
energy effective behaviours in the EFQH system are controlled by a k = 2 non-abelian Chern–
Simons topological quantum field theory in the bulk while the behaviours of the edge states are
controlled by a c = 3k/(k +2) = 3/2 conformal field theory which consists of chiral Majorana
free fermionic modes with a velocity vs and a chiral free bosonic mode with a velocity vn � vs .

1 The fractional quantum Hall effect for the even denominator filling factor was observed only at ν = 5/2. For
ν = 1/2, there was known to be a Fermi liquid of composite fermions [11]. Experimentally, see Willett et al [6] and
many further researches. For ν � 9/2, the states may be the unidirectional density wave states (Fogler et al [6]) or
anisotropic liquid crystalline states (Fradkin and Kivelson [6], Ciftja and Wexler).
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Although this was already recognized by Moore and Read [4] according to the correspondence
between the wavefunctions of various FQH states and the correlation functions of the conformal
field theory, a fundamental understanding from a microscopic point of view is still lacking.
The velocity vn was not determined. The chirality of the edge modes is a mystery because
the composite fermions (CFs) at the half-filling of the Landau level do not see the effective
magnetic field.

The present author and his co-workers have provided an effective microscopic theory for
the edge states of the odd denominator FQHE [8]. We used a mean field theory with the CF
Hamiltonian in the bulk state. Projecting to a given Landau level, the electron band mass is
renormalized to the CF effective mass determined by the Coulomb interaction. Shankar and
Murthy have provided an understanding of this matter using a Hamiltonian formalism [9].
A simple calculation for the cancellation of the band mass has been given in our previous
work, from a Hartree–Fock approximation [10]. However, the random phase approximation
calculation showed that the CF effective mass in the half-filled Landau level is logarithmically
divergent no matter what gauge is taken [10, 11].

On the other hand, if there is a pairing interaction, this logarithmic divergence of the
effective mass of the vortex comes from the extended states with their energy larger than the
paring gap [12]. The origin of divergence of the CF effective mass is similar. Therefore, the
physics with the energy scale lower than the pairing gap can be studied in the same mean
field approximation as for the conventional FQHE if assuming a p-wave EFQH gap for the
bulk CFs with the upmost Landau level being half-filled. One can replace the band mass by
the Hartree–Fock effective mass. For a pure p-wave superfluid, the pairing interaction gives a
finite velocity of the edge Majorana fermionic excitation [13]. However, in this paper, we will
show that for the EFQH state, this conventional p-wave paring interaction does not contribute
to the velocity of the edge Majorana fermionic modes. We assume that the bulk states have a
p-wave gap. By integrating out the bulk states, the effective theory of the edge states includes
neutral chiral Majorana fermionic modes and a charged bosonic mode which is described by
the Calogero–Sutherland model [14, 15]. Although a conventional p-wave pairing interaction
between edge CFs does not contribute to the dynamics of the edge fermionic modes, there is a
bilinear coupling between the neutral and charged modes. The velocity of the neutral modes is
determined by this important coupling. It vanishes in the ground state as naively expected but
linearly increases as the wavevector of the charged mode.

2. General description

A two-dimensional interacting spinless electron gas in a high magnetic field is governed by the
following Hamiltonian:

H =
N∑

α=1

1

2mb

[
�pα − e

c
�A(�rα)

]2 +
∑

α<β

V (�rα − �rβ)+
∑

α

U(�rα)+ Ub, (1)

where V (�r) is the interaction between electrons. mb is the band mass of the electron; U(�r)
is the external potential trapping the electron gas in a disc and Ub is the interacting potential
of the neutralizing positive background charge2. The CF theory is a very useful tool in the
FQHE physics [11, 17]. We begin with the CF transformation which reads �(z1, . . . , zN ) =∏
α<β [ zα−zβ

|zα−zβ | ]φ̃�(z1, . . . , zN ), where � is the electron wavefunction and φ̃ is an even integer.
We assume that the bulk states have a gap which is caused by a p-wave pairing of CFs for a
filling factor ν = 1/φ̃ and all gapless excitations are in the edge. We now would like to study
the effective theory of the CF edge excitations in a disc. The partition function of the system is

2 There is an analytic expression for the confining potential U which is important in numerical calculation; see [16].
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given by

Z =
∑

Ne

C Ne
N

∫

∂

d2z1 . . . d
2zNe

∫

B
d2zNe+1 . . . d

2zN

×
(∑

δ

|�δ|2e−β(Eδ+Eg) +
∑

γ

|�γ |2e−β(Eγ+Eg)

)
, (2)

where Ne is the CF number in the edge and N is the total electron number. We have divided
the sample into the edge ∂ and the bulk B . Eg is the ground state energy and Eδ are the low-
lying gapless excitation energies with δ being the excitation mode index. Eγ are the gapped
excitation energies. One can integrate over the gapped state and the partition function of the
system may be written as

Z �
∑

δ,Ne

C Ne
N

∫

edge
d2z1 . . . d

2zNe |�e,δ|2e−(βEδ (Ne)+Eg)

=
∑

Ne

C Ne
N Tr(edge) e−βHe . (3)

In terms of the partition function (3), there is the most probable edge CF number N̄e which is
determined by δZ/δNe = 0. N̄e = ∫

dx ρe(x) with the edge density ρe(x) = h(x)n̄. Here
h(x) is the edge deformation and n̄ is the average density of the bulk electrons. We do not
distinguish N̄e and Ne hereafter if there is no ambiguity. We do not study the bulk physics in
the present work and assume that the CF interaction has been renormalized to a weak one. The
electron band mass has been renormalized to m∗, the effective mass of the CF, which is finite
with the order of the Coulomb interaction as we have explained. Hereafter, we use the unit h̄ =
e/c = 2m∗ = 1. For the disc sample with a radius R, the edge CFs are restricted to a circular
strip near the boundary with its width δR(�r ) � R. The edge Hamiltonian of the CFs reads

He =
Ne∑

i=1

[ �pi − �A(�ri )+ �ae(�ri )+ �ab(�ri)]2 +
∑

i< j

Veff(�ri − �r j )+
∑

i

Ueff(�ri ), (4)

where Veff is the effective interaction between edge CFs and Ueff is the effective trapping po-
tential including the interaction between the edge and bulk particles. The detailed expression
for Ueff may be quantitatively important in numerical calculation (see footnote 1), but here
for simplicity, we suppose that the trapping potential is an infinite wall for r � R in order to
analytically study a sharp edge state. Although this may not correctly reflect the quantitative
behaviour, the qualitative property which we are studying would not be changed. For real sam-
ples, the trapping potential is very much dependent on the sample cleaving. If Ueff is not so
sharp, the edge reconstruction is inevitable. In this case, more branches of the edge excitations
may appear [18]. The statistics gauge field �ae is given by

�ae(�ri )+ �ab(�ri ) = φ̃

2π

∑

j �=i

ẑ × (�ri − �r j )

|�ri − �r j |2 + φ̃

2π

∑

α∈bulk

ẑ × (�ri − �rα)
|�ri − �rα|2 . (5)

Taking the polar coordinate zi = ri eiϕi , the vector potential Aϕ(�ri ) = B
2 ri and Ar (�ri) = 0 and

substituting the polar variables and the vector potential into He, one has

He =
∑

i

[
− ∂2

∂r 2
i

+
(

− i

ri

∂

∂ϕi
+ φ̃(Ne − 1)

2ri

)2

+ φ̃2

4R2

∑

i

(∑

j �=i

cot
ϕi j

2

)2

− i
φ̃

R

∑

i< j

cot
ϕi j

2

[
∂

∂ri
− ∂

∂r j

]
− 1

R

∂

∂ri

]
+ Veff + Ueff + O(δR/R), (6)

where we use the mean field approximation āb,r = 0 and āb,r = − B
2 ri .
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3. Solutions

The Schrödinger equation He� = E� holds for a FQH edge state with a general filling
factor. For a given filling factor, the solution of Schrödinger equation is dependent on the
bulk states as we have seen in solving the equations for the odd denominator FQHE [8]. For an
even denominator quantum Hall state, e.g. the ν = 5/2 state [19, 20], numerical calculations
evidenced that the Moore–Read Pfaffian state may be the ground state [21]. Motivated by the
bulk ground state, we can write the general form of the wavefunction as

�(z1, . . . , zNe) = exp

{
−i

∑

i< j

ri − r j

4R
cot

ϕi j

2

}

× A(z1, . . . , zNe) f (r1, . . . , rNe )φcs(ϕ1, . . . , ϕNe). (7)

We anticipate that f determines the chirality of the edge charged mode which is described
by φcs. Then, A corresponds to the neutral fermionic modes. In fact, Milovanovic and Read
have written down the wavefunctions of the edge excitations [13, 22]. We will show that our
solutions are consistent with their wavefunctions while we confirm that the neutral fermion
modes do indeed have a linear dispersion and are chiral. The new observation is that the
velocity of these fermionic modes is proportional to the wavevector of the charged bosonic
edge mode.

In terms of the general wavefunction, the problem ready to solve yields

∑

i

{
− ∂2

∂r 2
i

− 1

R

∂

∂ri
− 2

R2

∂ lnχcs

∂ϕi

∂ lnA
∂ϕi

− 2
∂ lnA
∂ri

∂

∂ri
+ Ueff

}
f = (E − Eϕ) f (8)

with

−
∑

i

1

R2

∂2

∂ϕ2
i

χcs + 1

4R2

∑

i< j

φ̃(φ̃ − 1)

sin2(ϕi j/2)
χcs + Veffχcs = Eϕχcs, (9)

(∇2A)φcs = 0,
∑

i

−i
∂A
∂ϕi

=
∑

i

liA, (10)

where χcs = e(i/2)φ̃(Ne−1)
∑

i ϕiφcs and li is a set of integers or half-integers to be determined.
Equation (9) describes the charged edge excitations. If one neglects Veff in equation (9), it

is the famous Calogero–Sutherland model with Eϕ = ∑
i

n2
i

R2 , whose solutions are χcs =
�(n)

∏
i< j [sin ϕi j

2 ]φ̃ where �(n) is the Jack polynomial [23] with the highest weight state
satisfying

ni = Ii + 1
2

∑

j �=i

(φ̃ − 1) sgn(ni − n j ), (11)

where the Ii are a set of integers with respect to physical momentum along the azimuthal
direction. With the interaction Veff, in the limit of dilute gas, ni = Ii + 1

2

∑
j �=i θ(n j − ni )

with θ(�n) = (φ̃ − 1) sgn(�n) − 2δφ̃−1(�n) [8]. The phase shift 2δφ̃−1(�n) comes
from the interaction Veff which is continuous as a function of �k = �n/R and vanishes
at �k = 0 if Veff is short range. Because of the step function sgn(�n), the short range
interaction may not affect the low-lying behaviour of the edge modes. However, the velocity
of the charged mode is lifted by the interaction [8, 24]. (For details, see [24].) The
Coulomb interaction may cause an additional charged branch of the edge excitations with a
dispersion �k ln�k [8], which is precisely the one-dimensional plasmon excitation caused

4



J. Phys.: Condens. Matter 19 (2007) 466213 Y Yu

by the Coulomb interaction [25]. Now, we phenomenologically assume that Veff includes a
conventional p-wave pairing interaction

Hpair = i
∑

i

�

(
0 ∂̄i

∂i 0

)
, (12)

where a 2 × 2 matrix acts on the two components of the complex spinless CF state [13]. For a
pure px + ipy superconductor without the bosonic mode, this p-wave pairing interaction gives
a gapless chiral fermion excitation with its velocity vn = � at the edge [13]. However, for the
EFQH state, the pairing interaction may only change the velocity of the charged mode and may
not contribute to that of the neutral modes since

∑
i ∂A/∂zi = ∑

i ∂A/∂ z̄i = 0 according to
the total antisymmetry of A with the exchange of the CFs.

Equation (10) implies that if we can find the eigenstates of the second equation which
satisfy the first one, these states will indeed describe the neutral Majorana fermion modes with
a linear dispersion. The Moore–Read Pfaffian state Pf( 1

zi −z j
) satisfies these equations with∑

i li = −2. This is the ground state for even edge CF number. The ground state with an odd
edge CF is given by ψl = A(z0

1
1

z2−z3
. . . 1

zNe−1−zNe
). The multi-Majorana fermion excited states

are given by [13, 22]

A = A
(

zl1
1 . . . z

ls
s

1

zs+1 − zs+2
. . .

)
= A

(∑
εi1i2...is z

l1
i1

zl2
i2
. . . zls

is
ψ

is+1 ...iN
i1i2...is

)
, (13)

where ψ is+1 ...iN

i1i2...is
is a product of 1

zi −z j
where zi and z j do not include zi1 , zi2 , . . . , zis and of course

it is symmetric for any permutation of i1, i2, . . . , is .

4. The dynamic origin of the neutral fermion velocity and chirality of the charged mode

We now study the dynamics of the neutral fermion and chirality of the edge excitations. As
we have seen, the requirement of (∇2A)φcs = 0 gives rise to the chirality of the neutral
Majorana fermion edge modes. However, what if the origin of the motion of the neutral
modes for Veff does not contribute to vn? On the other hand, the charged mode at half-
filling does not feel an effective magnetic field. The Calogero–Sutherland model has both
left- and right-moving gapless modes from the Fermi points. Why is the edge charged mode
still chiral? To answer these questions, we consider the radial equation (8). The pseudo-
momentum of the Calogero–Sutherland model is defined by ki = ni/R. The pseudo-Fermi
points are in ±kF = ±φ̃ N̄e/2R and low energy excitations are around k ∼ ±(kF + q)
for q � kF. We define the neutral fermion momentum pi = li/R and consider multi-
Majorana fermion modes given by equation (13). Notice that −i ∂χcs

∂ϕi
= ∑

P kPiχP and

−i ∂A
∂ϕi

= A(∑i1i2...is
εi1i2...is (δi1i l1 + . . .+ δis i ls)z

l1
i1

zl2
i2
. . . zls

is
ψ

is+1 ...iN
i1i2...is

), where P is a permutation
of {1, . . . Ne}. The fourth term in equation (8) reads

− 2

R2

∑

i

∂ lnχcs

∂φi

∂ lnA
∂φi

= 2
s∑

a=1

pa

∑

i

ki Cki a, (14)

where

Cki a = 1

χcsA
A

( ∑

i1,...,ia ,...,is

εi1...ia ...is z
l1
i1
. . . zla

ia
. . . zls

is
ψ

is+1 ...iN

i1i2...is

∑

{P |Pia =i}
χP

)
. (15)

The symmetry of the reflection gives that Cka = C−ka . Thus, we have
∑

i k(0)i Ck(0)i a = 0 for the

ground state {k(0)i }. The low-lying excitations are given by {k(±)i } = {±(kF + q), k0
i �= ±kF}

5



J. Phys.: Condens. Matter 19 (2007) 466213 Y Yu

for q > 0. Thus the radial equation reads
∑

i

{
− ∂2

∂r 2
i

+ 2kFq ±
∑

a

2qC±kFa pa − 2

(
∂ lnA
∂ri

)
∂

∂ri
+ 1

R

∂

∂ri
+ Ueff

}
f = E± f. (16)

The third term in equation (16) is a bilinear coupling between the wavevectors of the neutral
and charged modes. Since C−kFa = CkFa which is assumed to be positive, this coupling
means that the charged mode around kF is accompanied by a set of neutral modes while
the excitation around −kF is not physical because the accompanying neutral fermion modes
lowered the energy of the system so that it became not lower bounded. The physical excitations
are confined around kF. This proves the chirality of the charged edge bosonic mode with its
velocity vs = vF = 2kF. The neutral modes have velocities vn,a = 2CkFaq . This is an
important observation made in this work: vn,a � vs is linearly dependent on the wavevector of
the charged mode. This dynamic origin of the velocity of the edge Majorana fermion has never
been predicted, in the existing literature.

We emphasize that the origin of the chirality of the charged edge mode for the half-filling
factor is very different from that for the FQHE with the odd denominator filling factor. For
the conventional FQHE, the edge CFs ‘see’ an effective magnetic field and the CF cyclotron
motion in this effective magnetic field is the origin of the chirality. The CFs for a half-filling
factor do not ‘see’ such an effective magnetic field. The chirality of the charged bosonic edge
mode stems from the coupling of this mode with the neutral Majorana chiral fermion modes.
Of course, from the point of view of electron motion, the chirality of the edge excitations is still
caused by the magnetic field. This is reflected in the wavefunctions: if we reverse the magnetic
field, z should be replaced by z̄ in all wavefunctions, which leads to a reverse of the chirality of
the edge excitations.

5. Conclusions

We have studied the dynamics of the edge Majorana fermions for the EFQH state with ν = 5/2.
We found that there is a bilinear coupling between neutral and charged modes in the effective
edge theory, which determines the dynamics of the neutral modes and the chirality of the
charged modes. The velocity of the neutral fermion is proportional to the wavevector of the
charged mode. The chirality of the charged edge mode originates from its coupling with the
neutral modes.
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